Volune or o cone Gylinder. \& Sphere Webquest

Volume of a Cone, Cylinder, \& Sphere Webquest
Directions: You will need to answer the questions or cone, cylinder, and sphere by going to the followi https://www ee $/$ mathindemand.com/volume-cone-cylind
1.) What is a three-dimensional object?

Name \qquad
Volume of a Cone, Cylinder, and Spher Qate: Directions: Solve the following pre Quiz your work to receive credit. 1.) Match each vocabulary word with its definition: 1.) Volume 2.) Cone $\begin{aligned} & \text { inbetween th } \\ & \text { distance } \\ & \text { center of } \\ & \text { inension }\end{aligned}$ ircle.

2.) Calculate the volum from the center.
a.)
(c.)

Please don't

 Get Connected

 Get Connected with with Math in Demand Math in Demand
 Teachers Pay Teachers Store
 (1) Visit My Pinterest
 Click on the buttons to learn more about me!
 Tube
 Email Me
 Thank you!!!

Teacher Notes

- Students will need access to a device.
- After students have completed the webquest, there is a quiz. I have provided 2 ways that you can give the quiz:
I.) The quiz is online but students would still need to fill out page 7 with their answers OR
2.) You can print page $I 3$ which has the quiz on the paper.
- I like to print pages 4-7 back to back and stapled (I use the ${ }^{\text {st }}$ option for the quiz).
Please let me know if you have any other questions about the webquest! You can email me at mathindemand@hotmail.com.
\qquad _)

Name: \qquad
Date: \qquad

Volume of a Cone, Cylinder, \& Sphere Webquest

\qquad

Directions: You will need to answer the questions on volume of a cone, cylinder, and sphere by going to the following website \qquad
https://www.exploremathindemand.com/volume-cone-cylinder-and-sphere.html
1.) What is a three-dimensional object?
2.) What is volume?

Problem \#3	Cone Problem \#4
a.) Define cone:	a.) Define cylinder:
b.) Draw and label a cone with:	b.) Draw and label a cylinder with:
i.) A radius and height	i.) A radius and height
ii.) A diameter and height	ii.) A diameter and height

$\underline{\text { Problem \#3 }}$ Cone	Problem \#4 $>$ Cylinder
c.) Give a real-world example:	c.) Give a real-world example:
d.) List 3 characteristics:	d.) List 3 characteristics:
i.)	i.)
ii.)	ii.)
iii.)	iii.)
e.) Give the volume formula for a cone:	e.) Give the volume formula for a cylinder:
f.) Solve practice problem \#1:	f.) Solve practice problem \#1:
g.) Solve practice problem \#2:	g.) Solve practice problem \#2:

b.) Draw and label a sphere with:
i.) A radius
ii.) A diameter
c.) Give a real-world example:
d.) List 3 characteristics:
i.)
ii.)
iii.)
e.) Give the volume formula for a sphere:
f.) Solve practice problem \#1:
g.) Solve practice problem \#2:

Volume of a Cone, Cylinder, and Sphere Quiz

Matching:
1.) \qquad 2.) \qquad
3.) \qquad
4.) \qquad 5.) \qquad 6.) \qquad
2.) Draw the figure below then calculate the volume:

3.) Draw the figure below then calculate the volume:

4.) Draw the figure below then calculate the volume:

\qquad)

ANSWER KEY

Volume of a Cone, Cylinder, \& Sphere Webquest

Directions: You will need to answer the questions on volume of a cone, cylinder, and sphere by going to the following website
https://www.exploremathindemand.com/volume-cone-cylinder-and-sphere.html
1.) What is a three-dimensional object? A three-dimensional object differs from two-dimensional objects because they are not flat. They can be measured in three directions: height, width, and depth.
2.) What is volume? Volume is the amount of space that an object occupies. Volume is measured in cubic units. Some examples include cubic feet, cubic inches, cubic centimeters, and etc.

a.) Define sphere:

A sphere is a three-dimensional object that is round like a ball and every point on the surface is equidistant (equal distance) from the center.
b.) Draw and label a sphere with:
i.) A radius
r - radius of the circle
ii.) A diameter
d- diameter of the circle

c.) Give a real-world example:

A basketball
d.) List 3 characteristics:
i.) One curved surface; round
ii.) Perfectly symmetrical
iii.) All points from the surface to the center are equal in length
e.) Give the volume formula for a sphere:

$$
\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}
$$

f.) Solve practice problem \#1:

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3} \\
& \mathrm{~V}=\frac{4}{3} \pi(5 \mathrm{ft})^{3} \\
& \mathrm{~V}=\frac{4}{3} \pi\left(125 \mathrm{ft}^{3}\right) \\
& \mathrm{V}=\frac{500}{3} \pi \mathrm{ft}^{3} \\
& \mathrm{~V} \approx 523.6 \mathrm{ft}^{3}
\end{aligned}
$$

g.) Solve practice problem \#2:

$\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\mathrm{V}=\frac{4}{3} \pi(9 \mathrm{in})^{3}$
$\mathrm{V}=\frac{4}{3} \pi\left(729 \mathrm{in}^{3}\right)$
$\mathrm{V}=\frac{2,916}{3} \pi \mathrm{in}^{3}$
$\mathrm{V}=972 \pi \mathrm{in}^{3}$
$\mathrm{V} \approx 3,053.6 \mathrm{in}^{3}$

Volume of a Cone, Cylinder, and Sphere Quiz

Matching:
1.) D
2.) C
3.) B
4.) F
5.) A
6.) E
2.) Draw the figure below then calculate the volume:

3.) Draw the figure below then calculate the volume:

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{3} \pi(12 \mathrm{in})^{3} \\
& \mathrm{~V}=\frac{4}{3} \pi\left(1,728 \mathrm{in}^{3}\right) \\
& \mathrm{V}=\frac{6,912}{3} \pi \mathrm{in}^{3} \\
& \mathrm{~V}=2,304 \pi \mathrm{in}^{3} \\
& \mathrm{~V} \approx 7,238.2 \mathrm{in}^{3}
\end{aligned}
$$

4.) Draw the figure below then calculate the volume:

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{3} \pi(14 \mathrm{ft})^{2}(33 \mathrm{ft}) \\
& \mathrm{V}=\frac{1}{3} \pi\left(196 \mathrm{ft}^{2}\right)(33 \mathrm{ft}) \\
& \mathrm{V}=\frac{1}{3} \pi\left(6,468 \mathrm{ft}^{3}\right) \\
& \mathrm{V}=2,156 \pi \mathrm{ft}^{3} \\
& \mathrm{~V} \approx 6,773.3 \mathrm{ft}^{3}
\end{aligned}
$$

Another Option for Quiz

I have provided two ways that you can give the quiz:
1.) You can have students click on the quiz from their devices then fill out page 7

OR

2.) You can give them the page below (page 13). The problems are given on the paper instead of online.
\qquad
Name \qquad
Date: \qquad

Volume of a Cone, Cylinder, and Sphere Quiz

Period: \qquad
Directions: Solve the following problems on volume. Make sure to show all your work to receive credit
1.) Match each vocabulary word with its definition:
1.) \qquad Volume
a.) A 3-dimensional object that has a curved surface inbetween two circular bases.
b.) The distance from a point on the surface of a circle to the center of the circle.
c.) A 3-dimensional object that has a circular base and comes to a point.
d.) The amount of space that an object occupies.
4.) Sphere
e.) The distance from a point on the surface of a circle that passes through the center to the other side of the
5.) \qquad Cylinder circle.
f.) A 3-dimensional object that is round like a ball and all
6.) ___ Diameter points on the surface is equidistant from the center
2.) Calculate the volume of each figure below:

b.)

c.)

\qquad) \qquad
Date: \qquad

Volume of a Cone, Cylinder, and Sphere Quiz

Period: \qquad
Directions: Solve the following problems on volume. Make sure to show all your work to receive credit.
1.) Match each vocabulary word with its definition:
1.) D Volume
2.) C Cone
3.) $\quad B$ Radius
4.) F sphere
d.) The amount of space that an object occupies.
e.) The distance from a point on the surface of a circle
that passes through the center to the other side of the
5.) A Cylinder
a.) A 3-dimensional object that has a curved surface inbetween two circular bases.
b.) The distance from a point on the surface of a circle to the center of the circle.
c.) A 3-dimensional object that has a circular base and comes to a point. circle.
f.) A 3-dimensional object that is round like a ball and all
6.) E Diameter points on the surface is equidistant from the center.
2.) Calculate the volume of each figure below:

$$
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}
$$

$$
\mathrm{V}=\pi(5 \mathrm{ft})^{2}(4 \mathrm{ft})
$$

$$
\mathrm{V}=\pi\left(25 \mathrm{ft}^{2}\right)(4 \mathrm{ft})
$$

$$
\mathrm{V}=\pi\left(100 \mathrm{ft}^{3}\right)
$$

$$
\mathrm{V} \approx 314.2 \mathrm{ft}^{3}
$$

b.)

$$
\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}
$$

$$
\mathrm{V}=\frac{4}{3} \pi(12 \mathrm{in})^{3}
$$

$$
\mathrm{V}=\frac{4}{3} \pi\left(1,728 \mathrm{in}^{3}\right)
$$

$$
\mathrm{V}=\frac{6,912}{3} \pi \mathrm{in}^{3}
$$

$$
\mathrm{V}=2,304 \pi \mathrm{in}^{3}
$$

$$
V \approx 7,238.2 \mathrm{in}^{3}
$$

c.)
c.)

$\mathrm{V}=\frac{1}{3} \pi(14 \mathrm{ft})^{2}(33 \mathrm{ft})$
$\mathrm{V}=\frac{1}{3} \pi\left(196 \mathrm{ft}^{2}\right)(33$
ft)

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{3} \pi\left(6,468 \mathrm{ft}^{3}\right) \\
& \mathrm{V}=2,156 \pi \mathrm{ft}^{3} \\
& \mathrm{~V} \approx 6,773.3 \mathrm{ft}^{3} \\
& \text { © 2019 Math in Demand }
\end{aligned}
$$

If you like my resource, please check out my other resources!
(Click on the pictures)
You'll love them!!!

Pre-Algebra

Interactive Notebook

© 2019 Math in Demand. The download of my

 resource includes a limited use license from Math in Demand. You may only use the resource for personal classroom use
Hence,

1.) This purchase does not allow you to transfer it to others such as another teacher, school, or district. You must purchase an additional license
2.) You may not sell my resource
3.) You may not place my resource on the internet Violating these terms is against the Digital Millennium Copyright Act (DMCA).

Credits

TaulaKunctudio

 Graphics by: www.jessicasawyerdesign.etsy.com